Hyperbaric oxygen downregulates ICAM-1 expression induced by hypoxia and hypoglycemia: the role of NOS

Author:

Buras Jon A.1,Stahl Gregory L.2,Svoboda Kathy K. H.3,Reenstra Wende R.4

Affiliation:

1. Department of Emergency Medicine and

2. Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Brigham and Women's Hospital, Boston 02115;

3. Department of Biomedical Sciences, Baylor College of Dentistry, Dallas, Texas 75246

4. Department of Pathology, Boston University School of Medicine, Boston, Massachusetts 02118; and

Abstract

Hyperbaric oxygen (HBO) is being studied as a therapeutic intervention for ischemia/reperfusion (I/R) injury. We have developed an in vitro endothelial cell model of I/R injury to study the impact of HBO on the expression of intercellular adhesion molecule-1 (ICAM-1) and polymorphonuclear leukocyte (PMN) adhesion. Human umbilical vein endothelial cell (HUVEC) and bovine aortic endothelial cell (BAEC) induction of ICAM-1 required simultaneous exposure to both hypoxia and hypoglycemia as determined by confocal laser scanning microscopy, ELISA, and Western blot. HBO treatment reduced the expression of ICAM-1 to control levels. Adhesion of PMNs to BAECs was increased following hypoxia/hypoglycemia exposure (3.4-fold, P < 0.01) and was reduced to control levels with exposure to HBO ( P = 0.67). Exposure of HUVECs and BAECs to HBO induced the synthesis of endothelial cell nitric oxide synthase (eNOS). The NOS inhibitor nitro-l-arginine methyl ester attenuated HBO-mediated inhibition of ICAM-1 expression. Our findings suggest that the beneficial effects of HBO in treating I/R injury may be mediated in part by inhibition of ICAM-1 expression through the induction of eNOS.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3