Affiliation:
1. Department of Molecular Biology, Yokohama City University School of Medicine, Kanazawa-Ku, Yokohama 236, Japan
Abstract
Protein kinase C (PKC) has been reported to be associated with the activation of extracellular signal-regulated kinase (ERK) by hyperosmolality. However, it is unclear whether hyperosmolality induces PKC activation and which PKC isoforms are involved in ERK activation. In this study, we demonstrate that NaCl increases total PKC activity and induces PKCα, PKCδ, and PKCε translocation from the cytosol to the membrane in NIH/3T3 cells, suggesting that hyperosmotic stress activates conventional PKC (cPKC) and novel PKC (nPKC). Further studies show that NaCl-inducible ERK1 and ERK2 (ERK1/2) activation is a consequence of cPKC and nPKC activation, because either downregulation with 12- O-tetradecanoylphorbol 13-acetate or selective inhibition of cPKC and nPKC by GF-109203X and rottlerin largely inhibited the stimulation of ERK1/2 phosphorylation by NaCl. In addition, we show that NaCl increases diacylglycerol (DAG) levels and that a phospholipase C (PLC) inhibitor, U-73122, inhibits NaCl-induced ERK1/2 phosphorylation. These results, together, suggest that a hyperosmotic NaCl-induced signaling pathway that leads to activation of ERK1/2 may sequentially involve PLC activation, DAG release, and cPKC and nPKC activation.
Publisher
American Physiological Society
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献