Affiliation:
1. Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521; and
2. Service de Biologie Cellulaire, CEA/Saclay, Gif-sur Yvette, Cedex, F-91191 France
Abstract
It has been proposed that aquaporin-4 (AQP4), a water channel expressed at the plasmalemma of skeletal muscle cells, is important in normal muscle physiology and in the pathophysiology of Duchenne's muscular dystrophy. To test this hypothesis, muscle water permeability and function were compared in wild-type and AQP4 knockout mice. Immunofluorescence and freeze-fracture electron microscopy showed AQP4 protein expression in plasmalemma of fast-twitch skeletal muscle fibers of wild-type mice. Osmotic water permeability was measured in microdissected muscle fibers from the extensor digitorum longus (EDL) and fractionated membrane vesicles from EDL homogenates. With the use of spatial-filtering microscopy to measure osmotically induced volume changes in EDL fibers, half times ( t 1/2) for osmotic equilibration (7.5–8.5 s) were not affected by AQP4 deletion. Stopped-flow light-scattering measurements of osmotically induced volume changes in plasmalemma vesicles also showed no significant differences in water permeability. Similar water permeability, yet ∼90% decreased AQP4 protein expression was found in EDL from mdx mice that lack dystrophin. Skeletal muscle function was measured by force generation in isolated EDL, treadmill performance time, and in vivo muscle swelling in response to water intoxication. No differences were found in EDL force generation after electrical stimulation [42 ± 2 (wild-type) vs. 41 ± 2 (knockout) g/s], treadmill performance time (22 vs. 26 min; 29 m/min, 13° incline), or muscle swelling (2.8 vs. 2.9% increased water content at 90 min after intraperitoneal water infusion). Together these results provide evidence against a significant role of AQP4 in skeletal muscle physiology in mice.
Publisher
American Physiological Society
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献