Molecular mechanisms of somatostatin-mediated intestinal epithelial barrier function restoration by upregulating claudin-4 in mice with DSS-induced colitis

Author:

Cai Lin1,Li Xiao12,Geng Chong1,Lei Xuelian1,Wang Chunhui1

Affiliation:

1. Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China

2. Division of Digestive Diseases, West China Hospital of Sichuan University, Chengdu, China

Abstract

Intestinal barrier dysfunction plays a crucial role in the pathogenesis of ulcerative colitis (UC). Previous studies have shown somatostatin (SST) can protect intestinal barrier structure possibly through upregulating tight junction (TJ) protein expression, but the mechanisms of this upregulation remain undefined. This study aimed to investigate the molecular mechanisms of interaction of SST with its downstream regulatory elements in DSS-induced colitis mice. In DSS-induced colitis mice, exogenous SST supplement (octreotide) effectively ameliorated disease progression, restored colonic barrier structure and function, and stimulated claudin-4 expression. Similar effects were also observed for SST on Caco-2 cells intervened by TNF-α. SST receptor 5 (SSTR5) agonist L-817,818 upregulated the claudin-4 expression whereas the SSTR2 agonist seglitide could not reverse TNF-α-induced reduction of claudin-4. SST treatment significantly decreased the phosphorylation levels of ERK1/2 and p38 induced by TNF-α. PD-98059 (ERK1/2 pathway inhibitor) but not SB-202190 (p38 pathway inhibitor) could reverse TNF-α-induced suppression of claudin-4 expression. Both inhibitors could improve the TJ barrier function damaged by TNF-α. Our studies suggest that the protective effect of SST on intestinal barrier achieved by upregulating claudin-4 expression through activation of SSTR5 and suppression of the ERK1/2 pathways. These findings will benefit the development of novel treatment regimens for UC.

Funder

National Natural Science Foundation of China (NSFC)

sichuan science and technology support project

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3