H2O2 activates red blood cell K-Cl cotransport via stimulation of a phosphatase

Author:

Bize I.1,Dunham P. B.1

Affiliation:

1. Department of Biology, Syracuse University, New York 13244, USA.

Abstract

K-Cl cotransport is involved in volume regulation in a number of cell types. Cell swelling stimulates K-Cl cotransport, probably by inhibition of a volume-sensitive kinase. K-Cl cotransport can also be activated by oxidants and thiol reagents. We investigated the effect of H2O2 on K-Cl cotransport of LK sheep red blood cells in an attempt to identify the target of oxidants. H2O2 stimulated K-Cl cotransport. The stimulation was virtually abolished by subsequent incubation with calyculin, a protein phosphatase inhibitor. This suggests that H2O2 stimulates a calyculin-sensitive phosphatase and activates K-Cl cotransport by causing a decrease in phosphorylation of the transporter or a regulatory protein. The thiol reagent N-ethylmaleimide, which stimulates K-Cl cotransport, did not stimulate cotransport further in cells with cotransport activated by staurosporine but did stimulate cotransport further in cells with cotransport activated by H2O2. These results suggest that there are at least two distinct phosphorylation sites on the transporter or a regulator. The results also suggest that the phosphatase is associated with the membrane.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sickle cell dehydration: Pathophysiology and therapeutic applications;Clinical Hemorheology and Microcirculation;2018-03-28

2. Molecular features and physiological roles of K + -Cl − cotransporter 4 (KCC4);Biochimica et Biophysica Acta (BBA) - General Subjects;2017-12

3. In vitromethods of assessing ocular biocompatibility using THP-1-derived macrophages;Cutaneous and Ocular Toxicology;2014-04-16

4. Pathophysiology of the K+-Cl− Cotransporters;Physiology and Pathology of Chloride Transporters and Channels in the Nervous System;2010

5. K–Cl cotransport function and its potential contribution to cardiovascular disease;Pathophysiology;2007-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3