Whole cell sodium conductance of principal cells freshly isolated from rat cortical collecting duct

Author:

Bubien J. K.1

Affiliation:

1. Department of Medicine, University of Alabama at Birmingham,USA.

Abstract

Cortical collecting duct fragments were manually dissected from 6-wk-old Sprague-Dawley rats. The fragments were enzymatically digested (collagenase A) into single cells, washed, and resuspended in serum-free RPMI 1640. Individual cells were examined electrophysiologically using the whole cell patch-clamp technique. Two morphologically distinct cell types were present in the cell suspension. Small round cells that had a capacitance of 7 pF and larger oval cells with a capacitance of 29 pF were consistently observed. Whole cell electrophysiological examination revealed that the small round cells had virtually no plasma membrane ionic conductance, whereas both inward and outward currents were observed in the larger oval-type cells. Also, superfusion of 250 pM arginine vasopressin specifically increased the inward conductance of only the larger cells. The effect could be completely inhibited by 2 microM amiloride or 100 mumol of the Rp diastereomer of 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (a specific adenosine 3',5'-cyclic monophosphate inhibitor). These findings are consistent with the hypothesis that the larger cells are principal cells and the smaller cells are intercalated cells and directly demonstrate that an amiloride-sensitive whole cell conductance is readily observable in freshly isolated cortical collecting duct cells. Thus the whole cell configuration of the patch-clamp technique appears to be well suited for assessing cellular mechanisms that regulate the ionic conductances of cortical collecting duct cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Reference17 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3