Affiliation:
1. Department of Neurology, University of Chicago, Illinois 60637,USA.
Abstract
Arachidonic acid (AA) and its metabolites play a dual role as intracellular second messengers and as transcellular mediators of neural activity. We have previously shown that AA increases cytosolic Ca2+ in oligodendrocytes. In this work, we studied the effects of AA and other fatty acids on whole cell K+ currents of cultured rat oligodendrocytes using the patch-clamp technique. We found that 1) AA decreased the current amplitudes of both the inwardly rectifying K+ current (IKir) and the outward K+ currents (IKo) resulting in membrane depolarization; 2) AA also induced IKo current inactivation/blocked state; 3) AA appeared to act directly on K+ channels and not indirectly via its metabolic products, activation of protein kinase C, or by generation of oxygen free radicals. We have thus demonstrated an additional mechanism for AA-induced signaling in oligodendrocytes, i.e., via modulation of K+ conductances leading to membrane depolarization. The latter has been shown to influence protein phosphorylation and perhaps other important functional output of oligodendrocytes.
Publisher
American Physiological Society
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献