S-nitrosoglutathione reversibly inhibits GAPDH by S-nitrosylation

Author:

Padgett C. M.1,Whorton A. R.1

Affiliation:

1. Department of Pharmacology, Duke University Medical Center, Durham,North Carolina 27710, USA.

Abstract

Nitric oxide (NO), produced by vascular endothelial cells, mediates both physiological and pathological responses. Although the molecular targets responsible for NO-mediated endothelial cell injury are not known, one candidate is the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In this study, we investigated the mechanism involved in NO-mediated GAPDH inhibition and found that S-nitrosoglutathione (GSNO) inhibited GAPDH activity in both purified enzyme preparations and endothelial cells. Furthermore, GSNO-mediated GAPDH inhibition occurred by modification of the active site cysteine residue in GAPDH, since increasing concentrations of the substrate, glyceraldehyde-3-phosphate, which interacts with the active site cysteine residue, protected GAPDH from inhibition by GSNO. Although under certain conditions both GSNO and the NO donor, sodium nitroprusside (SNP), led to the covalent NAD(+)-dependent modification of GAPDH, this putative ADP ribosylation was unlikely to be the primary mechanism for inhibition, since the stoichiometry was extremely low, and, in the case of GSNO, inhibition was completely reversed by thiol reagents. Furthermore, GSNO effectively S-nitrosylated GAPDH, and the extent of nitrosylation was linearly correlated with the degree of inhibition such that addition of 1 mole of NO per mole of GAPDH monomer was necessary to inhibit the enzyme. Consistent with this finding, GSNO-mediated GAPDH inhibition was reversible with low-molecular-weight thiols, and the reversal of inhibition correlated with the "denitrosylation" of GAPDH. These results suggest that endothelial GAPDH is a target for NO and that inhibition occurs principally by the reversible S-nitrosylation of the active site cysteine residue in GAPDH.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3