Affiliation:
1. Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
Abstract
Arachidonic acid and its metabolites are important cellular mediators. In this study, we report a novel role for arachidonic acid in vascular cell signaling. We tested the effects of exogenous arachidonic acid on protein tyrosine phosphorylation in cultured vascular endothelial and smooth muscle cells. Arachidonic acid stimulated the phosphorylation of tyrosine-containing proteins of approximately 58, 93, and 120 kDa in the three cell types studied. This response was dose dependent, with a maximum effect observed with 40 microM arachidonic acid. Phosphorylation was rapid and transient, reaching a peak 0.5 min after the addition of arachidonic acid and returning to baseline by 8 min. A common set of protein substrates was phosphorylated in smooth muscle cells treated with the Ca(2+)-mobilizing agonist endothelin, concomitant with an increase in endogenous unesterified arachidonic acid. To determine whether the protein tyrosine phosphorylation was due to arachidonic acid or to a metabolite, we used inhibitors of cyclooxygenase, lipoxygenase, and epoxygenase pathways. Ibuprofen, nordihydroguaiaretic acid, eicosatriynoic and eicosatetraynoic acids, and 8-methoxypsoralen failed to inhibit the arachidonic acid-mediated response. We also found increased protein tyrosine phosphorylation after treatment with oleic, linolenic and gamma-linoleic acid. These results suggest a mechanism of protein tyrosine phosphorylation that is directly stimulated by unmetabolized unsaturated fatty acids.
Publisher
American Physiological Society
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献