Unitary conductance of Na+ channel isoforms in cardiac and NB2a neuroblastoma cells

Author:

Baumgarten C. M.1,Dudley S. C.1,Rogart R. B.1,Fozzard H. A.1

Affiliation:

1. Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.

Abstract

Unitary conductances of native Na+ channel isoforms (gamma Na) have been determined under a variety of conditions, making comparisons of gamma Na difficult. To allow direct comparison, we measured gamma Na in cell-attached patches on NB2a neuroblastoma cells and rabbit ventricular myocytes under identical conditions [pipette solution (in mM): 280 Na+ and 2 Ca2+, pH 7.4; 10 degrees C]. gamma Na of NB2a channels, 22.9 +/- 0.9 pS, was 21% greater than that of cardiac channels, 18.9 +/- 0.9 pS. In contrast, respective extrapolated reversal potentials, +62.4 +/- 4.6 and +57.9 +/- 5.1 mV, were not significantly different. Several kinetic differences between the channel types were also noted. Negative to -20 mV, mean open time (MOT) of the NB2a isoform was significantly less than that of cardiac channels, and, near threshold, latency to channel opening decayed more rapidly in NB2a. On the basis of analysis of MOT between -60 and 0 mV, the rate constants at 0 mV for the open-to-closed (O-->C) and open-to-inactivated (O-->I) transitions were 0.42 +/- 0.11 and 0.47 +/- 0.11 ms-1 in NB2a and 0.10 +/- 0.06 and 1.19 +/- 0.07 ms-1 in myocytes. The slope factors were -38.9 +/- 8.7 and +10.7 +/- 6.1 mV in NB2a and -27.3 +/- 7.1 and +23.7 +/- 4.9 mV in myocytes. Transition rate constants were significantly different in NB2a and cardiac cells, but voltage dependence was not.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3