IP3-activated Ca2+ channels in the plasma membrane of cultured vascular endothelial cells

Author:

Vaca L.1,Kunze D. L.1

Affiliation:

1. Department of Molecular Physiology and Biophysics, Baylor College ofMedicine, Houston, Texas 77030, USA.

Abstract

Although it is clear that D-myo-inositol 1,4,5-trisphosphate (IP3) plays an important role in the activation of Ca2+ influx, the mechanisms by which this occurs remain controversial. In an attempt to determine the role of IP3 in the activation of Ca2+ influx, patch-clamp single-channel experiments in the cell-attached, inside-out, and outside-out configurations were performed on cultured bovine aortic endothelial cells (BAEC). The results presented indicate that both IP3 and intracellular Ca2+ can modulate the activity of a Ca(2+)-selective channel found in the plasma membrane of these cells. Addition of 10 microM IP3 increased channel open probability (P(o)) from a control value of 0.12 +/- 0.05 to 0.7 +/- 0.13 at a constant intracellular Ca2+ of 1 nM in excised inside-out patches. D-Myo-inositol 1,3,4,5-tetrakisphosphate at 50 microM was ineffective in altering channel P(o). Channel activity declined after approximately 2 min in the continuous presence of IP3. Three to four minutes after addition of IP3, channel P(o) was reduced from 0.7 +/- 0.2 to 0.2 +/- 0.1, indicating that an additional regulator might be required to maintain channel activity in excised patches. The channel was reversibly blocked by application of 1 microgram/ml heparin to the intracellular side of inside-out patches. This Ca(2+)-selective channel is indistinguishable from the depletion-activated Ca2+ channel we have previously described in BAEC.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3