Conversion between permeability states of IP3 receptors in cultured smooth muscle cells

Author:

Sugiyama T.1,Goldman W. F.1

Affiliation:

1. Department of Physiology, University of Maryland School of Medicine,Baltimore, USA.

Abstract

The kinetics of the effect of inositol 1,4,5-trisphosphate (IP3) on Ca2+ in the sarcoplasmic reticulum (SR) were studied in saponin-permeabilized A7r5 cells. At 0.1 microM, IP3 elicited slow monoexponential declines in SR free Ca2+ concentration ([Ca2+]SR). For IP3 concentration ([IP3]) = 0.2-100 microM, evoked declines in [Ca2+]SR were biphasic and best fit as the sum of two first-order processes with rate constants kfast and kslow. The kfast varied as a function of [IP3] over the range tested, whereas kslow was already maximal when [IP3] = 0.1 microM. To analyze SR Ca2+ release elicited by IP3, the rate constants for IP3-induced changes in the total SR Ca2+ content (kR) were calculated. kR was accurately described only when both [Ca2+]SR and [IP3] were considered together. kR was dependent on IP3 binding to receptors that existed in either of two states, a high-affinity low-conductance state (IP3RH) and a low-affinity high-conductance state (IP3RL). The permeability of IP3RL was 12.28 times larger than that of IP3RH, and the conversion between permeability states as well as changes in both the affinity and cooperativity with which IP3 was bound to IP3RL were mediated by SR Ca2+. This SR Ca(2+)-dependent modulation of the characteristics of IP3 receptors forms the basis for the biphasic time course characteristic of IP3-evoked SR Ca2+ release.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3