An oxonol dye is the most potent known inhibitor of band 3-mediated anion exchange

Author:

Knauf P. A.1,Law F. Y.1,Hahn K.1

Affiliation:

1. Department of Biophysics, University of Rochester School of Medicine, New York 14642, USA.

Abstract

When cells are acutely exposed to the oxonol dye, bis(1,3-dibutylbarbituric acid)pentamethine oxonol (diBA), at 0 degrees C, the concentration that gives half inhibition of Cl- exchange (IC50) is 0.146 +/- 0.013 microM (n = 12) initially, but the inhibition increases with time. These characteristics indicate that a rapid initial binding is followed by a slow conformational change that makes the binding tighter. If diBA is allowed to equilibrate with band 3, the IC50 is only 1.05 +/- 0.13 nM (n = 5), making diBA a more potent inhibitor than 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), for which the IC50 under similar conditions is 31 +/- 6 nM [T. Janas, P. J. Bjerrum, J. Brahm, and J. O. Wieth. Am. J. Physiol. 257 (Cell Physiol. 26): C601-C606, 1989]. Inhibition by diBA is very slowly reversible at 0 degrees C (t1/2 > 50 h), but the effect is more readily reversible at higher temperatures. DiBA competes with 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) for inhibition, suggesting an external site of action. In contrast to DIDS and DNDS, however, increasing Cl- concentrations do not decrease the inhibitory effect of diBA, indicating that the inhibition is not competitive. Thus diBA may be useful for investigating conformational changes during anion exchange and for stopping transport without preventing substrate binding. However, when diBA and other oxonols are used to sense membrane potential, they may have undesirable side effects on anion transport processes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3