Sphingosine 1-phosphate signaling is involved in skeletal muscle regeneration

Author:

Danieli-Betto Daniela12,Peron Samantha1,Germinario Elena12,Zanin Marika1,Sorci Guglielmo23,Franzoso Susanna4,Sandonà Dorianna4,Betto Romeo25

Affiliation:

1. Department of Human Anatomy and Physiology, University of Padova, Padua;

2. Interuniversity Institute of Myology;

3. Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia; and

4. Department of Biomedical Sciences, University of Padova, Padua; and

5. Institute of Neurosciences, Consiglio Nazionale delle Ricerche, Padua, Italy

Abstract

Sphingosine 1-phosphate (S1P) is a bioactive lipid known to control cell growth that was recently shown to act as a trophic factor for skeletal muscle, reducing the progress of denervation atrophy. The aim of this work was to investigate whether S1P is involved in skeletal muscle fiber recovery (regeneration) after myotoxic injury induced by bupivacaine. The postnatal ability of skeletal muscle to grow and regenerate is dependent on resident stem cells called satellite cells. Immunofluorescence analysis demonstrated that S1P-specific receptors S1P1 and S1P3 are expressed by quiescent satellite cells. Soleus muscles undergoing regeneration following injury induced by intramuscular injection of bupivacaine exhibited enhanced expression of S1P1 receptor, while S1P3 expression progressively decreased to adult levels. S1P2 receptor was absent in quiescent cells but was transiently expressed in the early regenerating phases only. Administration of S1P (50 μM) at the moment of myotoxic injury caused a significant increase of the mean cross-sectional area of regenerating fibers in both rat and mouse. In separate experiments designed to test the trophic effects of S1P, neutralization of endogenous circulating S1P by intraperitoneal administration of anti-S1P antibody attenuated fiber growth. Use of selective modulators of S1P receptors indicated that S1P1 receptor negatively and S1P3 receptor positively modulate the early phases of regeneration, whereas S1P2 receptor appears to be less important. The present results show that S1P signaling participates in the regenerative processes of skeletal muscle.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3