AMPK-KLF2 signaling pathway mediates the proangiogenic effect of erythropoietin in endothelial colony-forming cells

Author:

Wang Dawei1,Song Yimeng2,Zhang Jianshu3,Pang Wei1,Wang Xian1,Zhu Yi4,Li Xiaoxia1

Affiliation:

1. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China

2. Urology Department, Peking University Third Hospital, Beijing, China

3. Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China

4. Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China

Abstract

Endothelial colony-forming cells (ECFCs) were proved to take part in postnatal vasculogenesis and injury repair. The angiogenic properties of ECFCs could be influenced by various cytokines, chemokines, and growth factors. Erythropoietin (EPO) is a promising cytokine participating in angiogenesis. However, the mechanisms for EPO’s proangiogenic effect still remain largely elusive. Here, we investigated the role of the AMP-activated protein kinase (AMPK)-Krüppel-like factor 2 (KLF2) signaling pathway in the proangiogenic effect of EPO in ECFCs. Human ECFCs were isolated from cord blood and cultured. EPO significantly enhanced the migration and tube formation capacities of ECFCs and markedly increased the expression of endothelial markers and vascular endothelial growth factor (VEGF). Further, EPO caused the phosphorylation of AMPK and endothelial nitric oxide synthase, a process in which KLF2 was also upregulated on both mRNA and protein levels. The upregulation of KLF2 was blocked by inhibiting AMPK with Compound C or Ad-AMPK-DN, a recombinant adenovirus that encoded a dominant-negative mutant of AMPK. Furthermore, knockdown of KLF2 showed no effect on AMPK but abolished the EPO-enhanced migration and tube formation capacities of ECFCs. Of note, knockdown of KLF2 also diminished the EPO-induced expression of endothelial markers and VEGF; overexpression of KLF2 promoted the expression of endothelial markers and VEGF and enhanced the migration and tube formation capacities of ECFCs. These data suggest that upregulation of KLF2 by AMPK plays an essential role in EPO-induced angiogenesis.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3