Junctophilin damage contributes to early strength deficits and EC coupling failure after eccentric contractions

Author:

Corona B. T.1,Balog E. M.2,Doyle J. A.1,Rupp J. C.1,Luke R. C.1,Ingalls C. P.1

Affiliation:

1. Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia; and

2. School of Applied Physiology, Georgia Institute of Technology, Atlanta, Georgia

Abstract

Junctophilins (JP1 and JP2) are expressed in skeletal muscle and are the primary proteins involved in transverse (T)-tubule and sarcoplasmic reticulum (SR) membrane apposition. During the performance of eccentric contractions, the apposition of T-tubule and SR membranes may be disrupted, resulting in excitation-contraction (EC) coupling failure and thus reduced force-producing capacity. In this study, we made three primary observations: 1) through the first 3 days after the performance of 50 eccentric contractions in vivo by the left hindlimb anterior crural muscles of female mice, both JP1 and JP2 were significantly reduced by ∼50% and 35%, respectively, while no reductions were observed after the performance of nonfatiguing concentric contractions; 2) following the performance of a repeated bout of 50 eccentric contractions in vivo, only JP1 was immediately reduced (∼30%) but recovered by 3-day postinjury in tandem with the recovery of strength and EC coupling; and 3) following the performance of 10 eccentric contractions at either 15° or 35°C by isolated mouse extensor digitorum longus (EDL) muscle, isometric force, EC coupling, and JP1 and JP2 were only reduced after the eccentric contractions performed at 35°C. Regression analysis of JP1 and JP2 content in tibialis anterior and EDL muscles from each set of experiments indicated that JP damage is significantly associated with early (0–3 days) strength deficits after performance of eccentric contractions ( R = 0.49; P < 0.001). As a whole, the results of this study indicate that JP damage plays a role in early force deficits due to EC coupling failure following the performance of eccentric contractions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3