Author:
Smani Tarik,Patel Tina,Bolotina Victoria M.
Abstract
The role of PKC in the regulation of store-operated Ca2+entry (SOCE) is rather controversial. Here, we used Ca2+-imaging, biochemical, pharmacological, and molecular techniques to test if Ca2+-independent PLA2β (iPLA2β), one of the transducers of the signal from depleted stores to plasma membrane channels, may be a target for the complex regulation of SOCE by PKC and diacylglycerol (DAG) in rabbit aortic smooth muscle cells (SMCs). We found that the inhibition of PKC with chelerythrine resulted in significant inhibition of thapsigargin (TG)-induced SOCE in proliferating SMCs. Activation of PKC by the diacylglycerol analog 1-oleoyl-2-acetyl- sn-glycerol (OAG) caused a significant depletion of intracellular Ca2+stores and triggered Ca2+influx that was similar to TG-induced SOCE. OAG and TG both produced a PKC-dependent activation of iPLA2β and Ca2+entry that were absent in SMCs in which iPLA2β was inhibited by a specific chiral enantiomer of bromoenol lactone ( S-BEL). Moreover, we found that PKC regulates TG- and OAG-induced Ca2+entry only in proliferating SMCs, which correlates with the expression of the specific PKC-ε isoform. Molecular downregulation of PKC-ε impaired TG- and OAG-induced Ca2+influx in proliferating SMCs but had no effect in confluent SMCs. Our results demonstrate that DAG (or OAG) can affect SOCE via multiple mechanisms, which may involve the depletion of Ca2+stores as well as direct PKC-ε-dependent activation of iPLA2β, resulting in a complex regulation of SOCE in proliferating and confluent SMCs.
Publisher
American Physiological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献