Contribution of actin filaments and microtubules to quasi-in situ tensile properties and internal force balance of cultured smooth muscle cells on a substrate

Author:

Nagayama Kazuaki,Matsumoto Takeo

Abstract

The effects of actin filaments (AFs) and microtubules (MTs) on quasi-in situ tensile properties and intracellular force balance were studied in cultured rat aortic smooth muscle cells (SMCs). A SMC cultured on substrates was held using a pair of micropipettes, gradually detached from the substrate while maintaining in situ cell shape and cytoskeletal integrity, and then stretched up to ∼15% and unloaded three times at the rate of 1 μm every 5 s. Cell stiffness was ∼20 nN per percent strain in the untreated case and decreased by ∼65% and ∼30% following AF and MT disruption, respectively. MT augmentation did not affect cell stiffness significantly. The roles of AFs and MTs in resisting cell stretching and shortening were assessed using the area retraction of the cell upon noninvasive detachment from thermoresponsive gelatin-coated dishes. The retraction was ∼40% in untreated cells, while in AF-disrupted cells it was <20%. The retraction increased by ∼50% and decreased by ∼30% following MT disruption and augmentation, respectively, suggesting that MTs resist intercellular tension generated by AFs. Three-dimensional measurements of cell morphology using confocal microscopy revealed that the cell volume remained unchanged following drug treatment. A concomitant increase in cell height and decrease in cell area was observed following AF disruption and MT augmentation. In contrast, MT disruption significantly reduced the cell height. These results indicate that both AFs and MTs play crucial roles in maintaining whole cell mechanical properties of SMCs, and that while AFs act as an internal tension generator, MTs act as a tension reducer, and these contribute to intracellular force balance three dimensionally.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3