Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells

Author:

Navedo Manuel F.1,Takeda Yukari1,Nieves-Cintrón Madeline1,Molkentin Jeffery D.2,Santana Luis F.1

Affiliation:

1. Department of Physiology & Biophysics, University of Washington, Seattle, Washington; and

2. Children's Hospital Medical Center for Molecular Cardiovascular Biology, Cincinnati, Ohio

Abstract

Ca+ sparklets are subcellular Ca2+ signals produced by the opening of L-type Ca2+ channels (LTCCs). In cerebral arterial myocytes, Ca2+ sparklet activity varies regionally, resulting in low and high activity, “persistent” Ca2+ sparklet sites. Although increased Ca2+ influx via LTCCs in arterial myocytes has been implicated in the chain of events contributing to vascular dysfunction during acute hyperglycemia and diabetes, the mechanisms underlying these pathological changes remain unclear. Here, we tested the hypothesis that increased Ca2+ sparklet activity contributes to higher Ca2+ influx in cerebral artery smooth muscle during acute hyperglycemia and in an animal model of non-insulin-dependent, type 2 diabetes: the dB/dB mouse. Consistent with this hypothesis, acute elevation of extracellular glucose from 10 to 20 mM increased the density of low activity and persistent Ca2+ sparklet sites as well as the amplitude of LTCC currents in wild-type cerebral arterial myocytes. Furthermore, Ca2+ sparklet activity and LTCC currents were higher in dB/dB than in control myocytes. We found that activation of PKA contributed to higher Ca2+ sparklet activity during hyperglycemia and diabetes. In addition, we found that the interaction between PKA and the scaffolding protein A-kinase anchoring protein was critical for the activation of persistent Ca2+ sparklets by PKA in cerebral arterial myocytes after hyperglycemia. Accordingly, PKA inhibition equalized Ca2+ sparklet activity between dB/dB and wild-type cells. These findings suggest that hyperglycemia increases Ca2+ influx by increasing Ca2+ sparklet activity via a PKA-dependent pathway in cerebral arterial myocytes and contributes to vascular dysfunction during diabetes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3