Affiliation:
1. Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan;
2. Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan; and
3. Department of Pharmaceutical Toxicology, School of Pharmaceutical Sciences, China Medical University, Shenyang, China
Abstract
Cardiac L-type Ca2+ channels are modulated by phosphorylation by protein kinase A (PKA). To explore the PKA-targeted phosphorylation site(s), five potential phosphorylation sites in the carboxyl (COOH) terminal region of the α1C-subunit of the guinea pig Cav1.2 Ca2+ channel were mutated by replacing serine (S) or threonine (T) residues with alanine (A): S1574A (C1 site), S1626A (C2), S1699A (C3), T1908A, (C4), S1927A (C5), and their various combinations. The wild-type Ca2+ channel activity was enhanced three- to fourfold by the adenylyl cyclase activator forskolin (Fsk, 5 μM), and that of mutants at C3, C4, C5, and combination of these sites was also significantly increased by Fsk. However, Fsk did not modulate the activity of the C1 and C2 mutants and mutants of combined sites involving the C1 site. Three peptides of the COOH-terminal tail of α1C, termed CT1 [corresponding to amino acids (aa) 1509–1789, containing sites C1–3], CT2 (aa 1778–2003, containing sites C4 and C5), and CT3 (aa 1942–2169), were constructed, and their phosphorylation by PKA was examined. CT1 and CT2, but not CT3, were phosphorylated in vitro by PKA. Three CT1 mutants at two sites of C1-C3 were also phosphorylated by PKA, but the mutant at all three sites was not. The CT2 mutant at the C4 site was phosphorylated by PKA, but the mutant at C5 sites was not. These results suggest that Ser1574 (C1 site) may be a potential site for the channel modulation mediated by PKA.
Publisher
American Physiological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献