ATF6 knockdown decreases apoptosis, arrests the S phase of the cell cycle, and increases steroid hormone production in mouse granulosa cells

Author:

Xiong Yongjie12,Chen Huatao12ORCID,Lin Pengfei12,Wang Aihua2,Wang Lei12,Jin Yaping12

Affiliation:

1. Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; and

2. College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China

Abstract

Activating transcription factor 6 (ATF6), a sensor protein located in the endoplasmic reticulum (ER) membrane, is an important factor in the ER stress signaling pathway. ER stress is known to be involved in folliculogenesis, follicular growth, and ovulation; however, the physiological function of ATF6 in mouse granulosa cells remains largely unknown. The aim of this study was to assess the role of ATF6 in mouse granulosa cells with respect to apoptosis, the cell cycle, and steroid hormone production, as well as several key genes related to follicular development, via RNA interference, immunohistochemical staining, real-time quantitative PCR, Western blotting, flow cytometry, terminal deoxynucleotidyltransferase-mediated deoxy-UTP nick end labeling (TUNEL) assay, and ELISA. Immunohistochemical staining revealed that ATF6 was extensively distributed in the granulosa cells of various ovarian follicles and oocytes in adult female mice. FSH or LH treatment significantly increased ATF6 protein levels in mouse granulosa cells. In the meantime, a recombinant plasmid was used to deplete ATF6 successfully using short hairpin RNA-mediated interference technology, which was verified at both the mRNA and protein levels. Flow cytometry and TUNEL assay analysis indicated that ATF6 depletion decreased apoptosis and arrested the S phase of the cell cycle in mouse granulosa cells. Consistent with these results, p53, caspase-3, B cell lymphoma 2 (Bcl-2)-associated X protein, CCAAT-enhancer-binding protein homologous protein, cyclin A1, cyclin B1, and cyclin D2 mRNA expression decreased, whereas Bcl-2 and glucose-regulated protein 78 kDa mRNA expression increased. Interestingly, ATF6 knockdown obviously increased progesterone and estradiol production in mouse granulosa cells. Cytochrome P450 1b1 ( Cyp1b1) mRNA levels were downregulated, whereas Cyp11a1, steroidogenic acute regulatory, and Cyp19a1 mRNA levels were upregulated, in keeping with the changes in steroid hormones. Furthermore, ATF6 disruption remarkably increased insulin-like growth factor binding protein 4 ( Igfbp4) expression and decreased hyaluronan synthase 2 ( Has2), prostaglandin-endoperoxide synthase 2 ( Ptgs2), and prostaglandin F receptor ( Ptgfr) expression in mouse granulosa cells, which are proteins crucial for follicular development. But, after treating with tunicamycin, the levels of Has2, Ptgs2, and Ptgfr increased relatively, whereas Igfbp4 expression decreased. Collectively, these results imply that ATF6, as a key player in ER stress signaling, may regulate apoptosis, the cell cycle, steroid hormone synthesis, and other modulators related to folliculogenesis in mouse granulosa cells, which may indirectly be involved in the development, ovulation, and atresia of ovarian follicles by affecting the physiological function of granulosa cells. The present study extends our understanding and provides new insights into the physiological significance of ATF6, a key signal transducer of ER stress, in ovarian granulosa cells.

Funder

National Natural Science Foundation of China (NSFC)

Scientific Research Foundation for Talents of Northwest A&F University

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3