Hypoxia-augmented constriction of deep femoral artery mediated by inhibition of eNOS in smooth muscle

Author:

Han Jung-A.12,Seo Eun Yeoung12,Kim Hae Jin1,Park Su Jung1,Yoo Hae Young1,Kim Jin Young3,Shin Dong Min4,Kim Jin Kyoung3,Zhang Yin Hua1,Kim Sung Joon12

Affiliation:

1. Department of Physiology, Seoul National University College of Medicine, Seoul, Korea;

2. Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea;

3. Department of Anesthesiology-Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea; and

4. Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea

Abstract

In contrast to the conventional belief that systemic arteries dilate under hypoxia, we found that α-adrenergic contraction of rat deep femoral artery (DFA) is largely augmented by hypoxia (HVCDFA) while hypoxia (3% Po2) alone had no effect. HVCDFA was consistently observed in both endothelium-intact and -denuded vessels with partial pretone by phenylephrine (PhE) or by other conditions (e.g., K+ channel blocker). Patch-clamp study showed no change in the membrane conductance of DFA myocytes by hypoxia. The RhoA-kinase inhibitor Y27632 attenuated HVCDFA. The nitric oxide synthase inhibitor [nitro-l-arginine methyl ester (l-NAME)] and soluble guanylate cyclase inhibitor [oxadiazole quinoxalin (ODQ)] strongly augmented the PhE-pretone, while neither of the agents had effect without pretone. NADPH oxidase type 4 (NOX4) inhibitors (diphenylene iodonium and plumbagin) also potentiated PhE-pretone, which was reversed by NO donor. No additive HVCDFA was observed under the pretreatment with l-NAME, ODQ, or plumbagin. Western blot and immunohistochemistry analysis showed that both NOX4 and endothelial nitric oxide synthase (eNOS) are expressed in smooth muscle layer of DFA. Various mitochondria inhibitors (rotenone, myxothiazol, and cyanide) prevented HVCDFA. From the pharmacological data, as a mechanism for HVCDFA, we suggest hypoxic inhibition of eNOS in myocytes. The putative role of NOX4 and mitochondria requires further investigation. The HVCDFA may prevent imbalance between cardiac output and skeletal blood flow under emergent hypoxia combined with increased sympathetic tone.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3