Electron microprobe analysis of rabbit ciliary epithelium indicates enhanced secretion posteriorly and enhanced absorption anteriorly

Author:

McLaughlin Charles W.,Zellhuber-McMillan Sylvia,Macknight Anthony D. C.,Civan Mortimer M.

Abstract

The rate of aqueous humor formation sequentially across the pigmented (PE) and nonpigmented (NPE) ciliary epithelial cell layers may not be uniform over the epithelial surface. Because of the tissue's small size and complex geometry, this possibility cannot be readily tested by conventional techniques. Rabbit iris-ciliary bodies were divided, incubated, quick-frozen, cryosectioned, and freeze-dried for electron probe X-ray microanalysis of the elemental contents of the PE and NPE cells. We confirmed that preincubation with ouabain to block Na+,K+-ATPase increases Na+and decreases K+contents far more anteriorly than posteriorly. The anterior and posterior regions were the iridial portion of the primary ciliary processes and the pars plicata, respectively. Following interruption of gap junctions with heptanol, ouabain produced smaller changes in anterior PE cells, possibly reflecting higher Na+or K+permeability of anterior NPE cells. Inhibiting Na+entry selectively with amiloride, benzamil, or dimethylamiloride reduced anterior effects of ouabain by ∼50%. Regional dependence of net secretion was also assessed with hypotonic stress, which stimulates ciliary epithelial cell regulatory volume decrease (RVD) and net Clsecretion. In contrast to ouabain's actions, the RVD was far more marked posteriorly than anteriorly. These results suggest that 1) enhanced Na+reabsorption anteriorly, likely through Na+channels and Na+/H+exchange, mediates the regional dependence of ouabain's actions; and 2) secretion may proceed primarily posteriorly, with secondary processing and reabsorption anteriorly. Stimulation of anterior reabsorption might provide a novel strategy for reducing net secretion.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3