Isolation and characterization of plasma membranes from bovine carotid arteries

Author:

Sharma R. V.,Bhalla R. C.

Abstract

A plasma membrane fraction from bovine carotid arteries has been isolated by extraction of a crude microsomal fraction with a low-ionic-strength buffer containing ATP and Ca2+. This step was followed by sucrose-density-gradient centrifugation in the presence of 0.6 M KCl. The plasma membrane vesicles were enriched 60- to 80-fold in Na+-K+-adenosinetriphosphatase, 5'-nucleotidase, and phosphodiesterase I activities. The final yields of these marker enzymes were 12-18% of the total activities in the postnuclear supernatant, and the protein yield was 100-120 micrograms/g wet wt of carotid arteries. Contamination of the plasma membrane fraction by mitochondria and sarcoplasmic reticulum was low as judged by low activities of succinate--cytochrome-c reductase and NADPH--cytochrome-c reductase, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with smooth muscle-specific actin antibodies showed that the plasma membrane fraction was substantially free from myosin and actin contamination. The plasma membrane vesicles accumulated Ca2+ in the presence of ATP, and the accumulation was increased by calmodulin. Ca2+ accumulated in the presence or absence of calmodulin could be released almost completely from the vesicles by the addition of the Ca2+ ionophore A23187 but not by ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid, indicating that Ca2+ uptake in the presence of ATP is intravesicular. The effects of phosphate and oxalate on Ca2+ uptake in the plasma membranes were different from one another. Phosphate increased Ca2+ uptake in a concentration- and time-dependent manner, and the increase in Ca2+ uptake could be observed as early as 1 min. On the other hand, oxalate at concentrations up to 5 mM did not increase Ca2+ uptake significantly during the 30-min incubation. These plasma membranes can prove useful for the study of ion transport across plasma membranes, hormone binding, characterization of calcium channels, and preparation of antibodies against plasma membrane proteins.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3