Mitochondrial function and intracellular calcium in anoxic cardiac myocytes

Author:

Cheung J. Y.,Leaf A.,Bonventre J. V.

Abstract

Mitochondrial dysfunction has been implicated as the cause of irreversible injury in the ischemic heart. To circumvent artifacts associated with organelle isolation, mitochondrial function was studied in intact isolated, Ca2+-tolerant rat ventricular myocytes. After 30 min of anaerobic incubation, myocyte viability decreased from 76 +/- 1 to 33 +/- 4%. Basal O2 consumption rates (nanoatoms . mg cell protein-1 . min-1) were 17.1 +/- 1.3 in aerobic cells and 51.0 +/- 9.8 in anoxic cells. Carbonylcyanide-p-trifluoromethoxyphenyl hydrazone (FCCP)-stimulated rates were 65.5 +/- 9.2 and 84.5 +/- 15.3 in aerobic and anoxic cells, respectively. Respiratory control ratio was lower in anoxic cells: 2.3 +/- 0.3 versus 4.2 +/- 0.4 in aerobic cells. These data suggest that early anoxic mitochondrial injury is due to increased permeability of the inner membrane. Addition of pyruvate, malate, and FCCP to cells made permeable by digitonin resulted in similar maximal O2 consumption rates: 276.5 +/- 31.8 in aerobic and 299.3 +/- 31.9 in anoxic cells, suggesting the electron transport chain is intact in anoxic cells. For purposes of investigating whether anoxic mitochondrial dysfunction is secondary to cellular or mitochondrial Ca2+ overload, total cell Ca2+, cytosolic free Ca2+ levels (measured by null-point titration), and mitochondrial Ca2+ contents (measured as FCCP-releasable Ca2+) were measured. There were no differences in these three parameters between aerobic and anoxic cells, suggesting that mitochondrial dysfunction and irreversible hypercontraction of isolated cardiac myocytes exposed to 30 min of anoxia are not related to Ca2+ overload.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3