Ouabain binding to cultured vascular smooth muscle cells of the spontaneously hypertensive rat

Author:

Hopp L.,Khalil F.,Tamura H.,Kino M.,Searle B. M.,Tokushige A.,Aviv A.

Abstract

The binding of ouabain and K+ to the Na+ pump were analyzed in serially passed cultured vascular smooth muscle cells (VSMCs) originating from spontaneously hypertensive (SH), Wistar-Kyoto (WKY), and American Wistar (W) rats. Our techniques have utilized analyses of displacement of [3H]ouabain by both unlabeled ouabain and K+ from specific binding sites on the VSMCs. We have found that each of the VSMC preparations from the three rat strains appeared to demonstrate one population of specific ouabain receptors (Na+ pumps); the number of Na+ pump units (mean +/- SE, expressed as 10(5) units/cell; number of observations indicated in parentheses) of both the SH and WKY rats was significantly lower than the number of Na+ pump units of W rat VSMCs [SH: 3.00 +/- 0.02 (231), WKY: 2.87 +/- 0.05 (245), and W: 3.62 +/- 0.04 (225)]; the equilibrium dissociation constant values (microM) for ouabain in VSMCs of SH and WKY rats were similar but were significantly higher than that of VSMCs derived from W rats [SH: 4.69 +/- 0.09 (231), WKY: 4.57 +/- 0.12 (245), and W: 3.69 +/- 0.17 (225)]; and among the VSMCs originating from the three rat strains, the apparent equilibrium dissociation constant value for K+ (mM) was the lowest in those of the SH rat [1.04 +/- 0.003 (143), compared with VSMCs of the WKY rat [1.54 +/- 0.006 (135)] and W rat [1.19 +/- 0.003 (136)]. Our previous studies have demonstrated increased passive Na+ and K+ transport rate constants of SH rat VSMCs compared with either W or WKY rat cells. These findings suggest the possibility of higher permeabilities of the SH cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3