Aortic pressure as a determinant of cardiac protein degradation

Author:

Gordon E. E.,Kira Y.,Demers L. M.,Morgan H. E.

Abstract

Mechanical parameters and intracellular mediators that may control protein degradation were studied in isolated rat hearts subjected to increased aortic pressure. Elevation of aortic pressure from 60 to 120 mmHg in Langendorff preparations provided glucose or pyruvate as substrate decreased the rate of protein degradation during the second hour of perfusion. Intracellular contents of ATP or creatine phosphate or the creatine phosphate/creatine ratio did not indicate that energy depletion accounted for these effects. When ventricular pressure development was prevented by ventricular draining, and hearts were arrested with tetrodotoxin, protein degradation still decreased as aortic pressure was raised. The effect of elevated aortic pressure on proteolysis was unchanged when perfusate calcium concentrations were 0.6, 3.0, or 5.1 mM, or when indomethacin or meclofenamate was added to the perfusion buffer. These results provided no evidence to indicate that intraventricular pressure development or cardiac contraction was responsible for the inhibitory effect of increased aortic pressure on protein degradation. Instead, they suggested that stretch of the ventricular wall, as a consequence of increased aortic pressure, could be the mechanical parameter most closely related to the restraint on proteolysis. No evidence was obtained that the lower rate of degradation depended on energy or calcium availability or prostaglandin synthesis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3