Evidence for vasopressin activation of adenylate cyclase by subunit dissociation

Author:

Skorecki K. L.,Verkman A. S.,Jung C. Y.,Ausiello D. A.

Abstract

Radiation inactivation is used to probe the sequence of subunit interactions involved in the activation of adenylate cyclase by vasopressin in cultured renal epithelial cells (LLC-PK1) based on our previous analysis of the radiation inactivation of multimeric enzymes [Verkman et al., Am. J. Physiol. 250 (Cell Physiol. 19): C103-C114, 1986]. For basal adenylate cyclase activity, a concave downward ln(activity) vs. dose relation was observed with limiting slope corresponding to a molecular weight of (169-196) X 10(3). Similar results were obtained with NaF. In contrast, addition of vasopressin, guanylyl imidodiphosphate, or forskolin resulted in transition to a linear ln(activity) vs. dose relation with a slope corresponding to a molecular weight similar to that observed for basal activity. These findings were incorporated into a cyclic dissociation model for the hormonal activation of adenylate cyclase (graph see text) where H is hormone, R is receptor, C is catalytic unit, alpha and beta are subunits of guanyl nucleotide-regulatory protein (G), GTP is guanosine triphosphate, and GDP is guanosine diphosphate. The addition of H favors the dissociation of G into alpha and beta subunits by providing a rapid pathway for addition of GTP to dissociated alpha subunits. The observed target size of the active enzyme species formed corresponds to the composite molecular weights of alpha GTP with C. This model consolidates the radiation inactivation findings as well as the known biochemical characteristics for adenylate cyclase.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecular Size Determination of Enzymes by Radiation Inactivation;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

2. Vasopressin Receptor Antagonists;American Journal of Cardiovascular Drugs;2003

3. Transmembrane signaling in kidney health and disease;Pediatric Nephrology;1995-08

4. G-Proteins: implications for pathophysiology and disease;European Journal of Endocrinology;1994-12

5. Drug nephrotoxicity — The significance of cellular mechanisms;Progress in Drug Research / Fortschritte der Arzneimittelforschung / Progrès des recherches pharmaceutiques;1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3