Malignant human gliomas express an amiloride-sensitive Na+ conductance

Author:

Bubien James K.1,Keeton Deborah A.1,Fuller Catherine M.1,Gillespie G. Yancey2,Reddy Alyssa T.3,Mapstone Timothy B.2,Benos Dale J.1

Affiliation:

1. Departments of Physiology and Biophysics,

2. Surgery, and

3. Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005

Abstract

Human astrocytoma cells were studied using whole cell patch-clamp recording. An inward, amiloride-sensitive Na+ current was identified in four continuous cell lines originally derived from human glioblastoma cells (CH235, CRT, SKMG-1, and U251-MG) and in three primary cultures of cells obtained from glioblastoma multiforme tumors (up to 4 passages). In addition, cells freshly isolated from a resected medulloblastoma tumor displayed this same characteristic inward current. In contrast, amiloride-sensitive currents were not observed in normal human astrocytes, low-grade astrocytomas, or juvenile pilocytic astrocytomas. The only amiloride-sensitive Na+channels thus far molecularly identified in brain are the brain Na+ channels (BNaCs). RT-PCR analyses demonstrated the presence of mRNA for either BNaC1 or BNaC2 in these tumors and in normal astrocytes. These results indicate that the functional expression of amiloride-sensitive Na+ currents is a characteristic feature of malignant brain tumor cells and that this pathway may be a potentially useful target for therapeutic intervention.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3