Resistance to TNF-α cytotoxicity can be achieved through different signaling pathways in rat mesangial cells

Author:

Guo Yan-Lin1,Kang Baobin1,Williamson John R.1

Affiliation:

1. Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

We reported previously that Ro-318220 blocked expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) induced by tumor necrosis factor-α (TNF-α) and subsequently caused apopotosis in mesangial cells (Y.-L. Guo, B. Kang, and J. R. Williamson. J. Biol. Chem. 273: 10362–10366, 1998). These data support our hypothesis that a TNF-α-inducible phosphatase may be responsible for preventing sustained activation of c-Jun NH2-terminal protein kinase (JNK) and consequent cell death in these cells (Y.-L. Guo, K. Baysal, B. Kang, L.-J. Yang, and J. R. Williamson. J. Biol. Chem. 273: 4027–4034, 1998). In this study, we investigated the involvement of protein kinase C (PKC) in regulation of MKP-1 expression in mesangial cells together with effects on viability. Although originally characterized as a PKC inhibitor, Ro-318220 inhibited TNF-α-induced MKP-1 expression through a mechanism other than blocking the PKC pathway. Furthermore, inhibition of the PKC pathway neither significantly affected TNF-α-induced MKP-1 expression nor made cells susceptible to toxic effect of TNF-α. Thus PKC activation is not essential for cells to achieve the resistance to TNF-α cytotoxicity displayed by normal mesangial cells. However, activation of PKC by phorbol 12-myristate 13-acetate (PMA) dramatically increased cellular resistance to the apoptotic effect of TNF-α. Coincidentally, PMA stimulated MKP-1 expression and suppressed JNK activation. Therefore, PMA-induced MKP-1 expression may contribute to the protective effect of PMA. These results provide a mechanistic explanation for previous documentation that PKC activation can rescue some cells from apopotosis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3