Affiliation:
1. Institut für Herz- und Kreislaufphysiologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
Abstract
Endothelial cells are known to be metabolically rather robust. To study the mechanisms involved, porcine aortic endothelial cells (PAEC), cultured on microcarrier beads, were perfused with glucose (10 mM) or with substrate-free medium. Substrate-free perfusion for 2 h induced an almost complete loss of nucleoside triphosphates (31P-NMR) and decreased heat flux, a measure of total energy turnover, by >90% in parallel microcalorimetric measurements. Heat flux and nucleoside triphosphates recovered after addition of glucose. Because protein synthesis is a major energy consumer in PAEC, the rate of protein synthesis was measured ([14C]leucine incorporation). Reduction or blockade of energy supply resulted in a pronounced reduction in the rate of protein synthesis (up to 80% reduction). Intracellular triglyceride stores were decreased by ∼60% after 2 h of substrate-free perfusion. Under basal perfusion conditions, PAEC released ∼30 pmol purine ⋅ mg protein−1⋅ min−1, i.e., 16% of the cellular ATP per hour, while ATP remained constant. Substrate deprivation increased the release of various purines and pyrimidines about threefold and also induced a twofold rise in purine de novo synthesis ([14C]formate). These results demonstrate that PAEC are capable of recovering from extended periods of substrate deprivation. They can do so by a massive downregulation of their energy expenditure, particularly protein synthesis, while at the same time using endogenous triglycerides as substrates and upregulating purine de novo synthesis to compensate for the loss of purines.
Publisher
American Physiological Society
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献