Cloning and expression of the Na+/H+exchanger from Amphiuma RBCs: resemblance to mammalian NHE1

Author:

McLean Lee Anne1,Zia Shaheen2,Gorin Fredric A.2,Cala Peter M.1

Affiliation:

1. Departments of Human Physiology and

2. Neurology, School of Medicine, University of California, Davis, California 95616

Abstract

The cDNA encoding the Na+/H+exchanger (NHE) from Amphiumaerythrocytes was cloned, sequenced, and found to be highly homologous to the human NHE1 isoform (hNHE1), with 79% identity and 89% similarity at the amino acid level. Sequence comparisons with other NHEs indicate that the Amphiuma tridactylum NHE isoform 1 (atNHE1) is likely to be a phylogenetic progenitor of mammalian NHE1. The atNHE1 protein, when stably transfected into the NHE-deficient AP-1 cell line (37), demonstrates robust Na+-dependent proton transport that is sensitive to amiloride but not to the potent NHE1 inhibitor HOE-694. Interestingly, chimeric NHE proteins constructed by exchanging the amino and carboxy termini between atNHE1 and hNHE1 exhibited drug sensitivities similar to atNHE1. Based on kinetic, sequence, and functional similarities between atNHE1 and mammalian NHE1, we propose that the Amphiuma exchanger should prove to be a valuable model for studying the control of pH and volume regulation of mammalian NHE1. However, low sensitivity of atNHE1 to the NHE inhibitor HOE-694 in both native Amphiuma red blood cells (RBCs) and in transfected mammalian cells distinguishes this transporter from its mammalian homologue.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3