Affiliation:
1. Departments ofAnesthesiology and Intensive Care,
2. Molecular Cell Biology, and
3. Experimental Cardiology, Max Planck Institute for Physiological and Clinical Research, 61231 Bad Nauheim, Germany
Abstract
In this study, an in vitro model of the blood-brain barrier, consisting of porcine brain-derived microvascular endothelial cells (BMEC), was used to evaluate the mechanism of hypoxia-induced hyperpermeability. We show that hypoxia-induced permeability in BMEC was completely abolished by a neutralizing antibody to vascular endothelial growth factor (VEGF). In contrast, under normoxic conditions, addition of VEGF up to 100 ng/ml did not alter monolayer barrier function. Treatment with either hypoxia or VEGF under normoxic conditions induced a twofold increase in VEGF binding sites and VEGF receptor 1 (Flt-1) mRNA expression in BMEC. Hypoxia-induced permeability also was prevented by the nitric oxide (NO) synthase inhibitor NG-monomethyl-l-arginine, suggesting that NO is involved in hypoxia-induced permeability changes, which was confirmed by measurements of the cGMP level. During normoxia, treatment with VEGF (5 ng/ml) increased permeability as well as cGMP content in the presence of several antioxidants. These results suggest that hypoxia-induced permeability in vitro is mediated by the VEGF/VEGF receptor system in an autocrine manner and is essentially dependent on reducing conditions stabilizing the second messenger NO as the mediator of changes in barrier function of BMEC.
Publisher
American Physiological Society
Cited by
184 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献