Author:
Brauchi Sebastian,Rauch Maria C.,Alfaro Ivan E.,Cea Christian,Concha Ilona I.,Benos Dale J.,Reyes Juan G.
Abstract
Round spermatid energy metabolism is closely dependent on the presence of l-lactate in the external medium. This l-lactate has been proposed to be supplied by Sertoli cells in the seminiferous tubules. l-Lactate, in conjunction with glucose, modulates intracellular Ca2+concentration in round spermatids and pachytene spermatocytes. In spite of this central role of l-lactate in spermatogenic cell physiology, the mechanism of l-lactate transport, as well as possible differentiation during spermatogenesis, has not been studied in these cells. By measuring radioactive l-lactate transport and intracellular pH (pHi) changes with pHifluorescent probes, we show that these cells transport l-lactate using monocarboxylate-H+transport (MCT) systems. RT-PCR, in situ mRNA hybridization, and immunocyto- and immunohistochemistry data show that pachytene spermatocytes express mainly the MCT1 and MCT4 isoforms of the transporter (intermediate- and low-affinity transporters, respectively), while round spermatids, besides MCT1 and MCT4, also show expression of the MCT2 isoform (high-affinity transporter). These molecular data are consistent with the kinetic data of l-lactate transport in these cells demonstrating at least two transport components for l-lactate. These separate transport components reflect the ability of these cells to switch between the generation of glycolytic l-lactate in the presence of external glucose and the use of l-lactate when this substrate is available in the external environment. The supply of these substrates is regulated by the hormonal control of Sertoli cell glycolytic activity.
Publisher
American Physiological Society
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献