Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects

Author:

Menzies Keir J.,Robinson Brian H.,Hood David A.

Abstract

Mitochondrial (mt)DNA mutations contribute to various disease states characterized by low ATP production. In contrast, thyroid hormone [3,3′,5-triiodothyronine (T3)] induces mitochondrial biogenesis and enhances ATP generation within cells. To evaluate the role of T3-mediated mitochondrial biogenesis in patients with mtDNA mutations, three fibroblast cell lines with mtDNA mutations were evaluated, including two patients with Leigh's syndrome and one with hypertrophic cardiomyopathy. Compared with control cells, patient fibroblasts displayed similar levels of mitochondrial mass, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), mitochondrial transcription factor A (Tfam), and uncoupling protein 2 (UCP2) protein expression. However, patient cells exhibited a 1.6-fold elevation in ROS production, a 1.7-fold elevation in cytoplasmic Ca2+levels, a 1.2-fold elevation in mitochondrial membrane potential, and 30% less complex V activity compared with control cells. Patient cells also displayed 20–25% reductions in both cytochrome c oxidase (COX) activity and MnSOD protein levels compared with control cells. After T3treatment of patient cells, ROS production was decreased by 40%, cytoplasmic Ca2+was reduced by 20%, COX activity was increased by 1.3-fold, and ATP levels were elevated by 1.6-fold, despite the absence of a change in mitochondrial mass. There were no significant alterations in the protein expression of PGC-1α, Tfam, or UCP2 in either T3-treated patient or control cells. However, T3restored the mitochondrial membrane potential, complex V activity, and levels of MnSOD to normal values in patient cells and elevated MnSOD levels by 21% in control cells. These results suggest that T3acts to reduce cellular oxidative stress, which may help attenuate ROS-mediated damage, along with improving mitochondrial function and energy status in cells with mtDNA defects.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3