Ethylisopropylamiloride-sensitive pH control mechanisms modulate vascular smooth muscle cell growth

Author:

Bobik A.1,Grooms A.1,Little P. J.1,Cragoe E. J.1,Grinpukel S.1

Affiliation:

1. Alfred-Baker Medical Unit Laboratory, Alfred Hospital, Prahran, Victoria, Australia.

Abstract

The reported effects of alterations in Na-H exchange activity on mitogenesis are variable and appear dependent on the cell type examined. We examined the effects of reductions in ethylisopropylamiloride (EIPA)-sensitive pH-regulating mechanisms including Na-H exchange and alterations in intracellular pH (pHi) on the growth characteristics of rat aortic smooth muscle cells (RASM) cultured in serum-containing bicarbonate-buffered medium. Exposure of RASM replicating in bicarbonate-containing medium to the Na-H exchange inhibitors EIPA, dimethylamiloride (DMA), or amiloride (A) attenuated their replication rate. The order of potency of the inhibitors (EIPA greater than DMA much greater than A) was similar to their documented effects on Na-H exchange activity and to their order of potency for inhibiting recovery from CO2-induced acidosis in these cells. Reductions in pHi induced by lowering extracellular pH also attenuated the incorporation of [3H]-thymidine into DNA, while increases in pHi were associated with an acceleration in the rate of incorporation of [3H]thymidine into DNA. The effects of the Na-H exchange inhibitors on RASM replication were due to a reduction in the ability of the smooth muscle cells to enter the S phase of the mitotic cell cycle. This appeared predominantly the consequence of effects late within the G1 phase of the cell cycle. Concentrations of EIPA that markedly reduced the ability of RASM to enter S phase and to replicate also attenuated the increase in protein synthesis occurring 6-8 h after exposure to serum.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3