Length-dependent activation by Ba2+ and Sr2+ of skinned cardiac and skeletal muscle of the rabbit

Author:

Grundeman R. L.1,de Beer E. L.1,van den Berg C.1,van Buuren K. J.1,Schiereck P.1

Affiliation:

1. Department of Medical Physiology, University of Utrecht, The Netherlands.

Abstract

Over a wide range of sarcomere lengths, force activation by Ca2+, Ba2+, and Sr2+ was studied in papillary muscle and in fast skeletal fibers of the gracilis muscle of the rabbit, both skinned by means of freeze drying. The length-tension relations of Ba2+ activation differ significantly from those of Sr2+ and Ca2+ activation with respect to both the value and the position of the maximum. At (almost) full activation, force induced in gracilis muscle by Ba2+ was 50% of the developed force induced by Ca2+. The position of the Sr2+ sensitivity curve for papillary muscle preparations is independent of sarcomere length, in contrast to the position of the Ca2+ sensitivity curves. The binding of Sr2+ to the papillary preparation proves to be very stable as observed from the long-lasting relaxation after activation. Immersion of the papillary preparation in the relaxation fluid after activation with Ba2+ results in a tension transient: a rise in tension followed by a decrease was observed. The maximal value of the tension transient was up to twice the steady tension, dependent on Ba2+ concentration. The steady-state tension was approximately 50% of the Ca2(+)-induced tension. Ba2+ sensitivity curves are not sigmoidal but show a maximum. Above [Ba2+] greater than 10(-5) to 10(-4) M (dependent on sarcomere length) tension decreased. These observations suggest that two counteracting processes govern Ba2+ contraction in papillary muscle preparations, namely activation and inhibition.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3