Citrate decreases contraction and Ca current in cardiac muscle independent of its buffering action

Author:

Bers D. M.1,Hryshko L. V.1,Harrison S. M.1,Dawson D. D.1

Affiliation:

1. Division of Biomedical Sciences, University of California, Riverside92521-0121.

Abstract

Extracellular Ca (Cao) depletions that occur during cardiac muscle contractions are indicative of net Ca entry. Buffering Cao concentration ([Ca]o) with citrate can limit the magnitude of these Cao depletions [e.g., Shattock and Bers. Am. J. Physiol. 256 (Cell Physiol. 25): C813-C822, 1989] which theoretically would allow more Ca entry and consequently greater force at the same free [Ca]o. However, Shimoni and Ginsburg [Am. J. Physiol. 252 (Cell Physiol. 21): C248-C252, 1987] have shown that citrate inhibits cardiac contractions and suggested that this was due to its Ca-buffering action (i.e., dissipating a local elevation of [Ca] at the outer sarcolemmal surface and thereby decreasing Ca influx). To examine the effects of Ca buffering per se, we compared the effects of four low-affinity Ca buffers [citrate, nitrilotriacetic acid (NTA), dipicolinic acid (DPA), and acetamidoiminodiacetic acid (ADA)] on several cardiac preparations. In Mg-free medium with 2 mM free Ca (measured using murexide), citrate, DPA, and ADA (10 mM) decreased the force of twitch contractions in rabbit ventricle to 76 +/- 2, 60 +/- 2, and 85 +/- 2%, respectively, but 10 mM NTA increased force slightly to 105 +/- 2%. No simple correlation was observed between the Ca affinity of the buffer and its effect on tension. These effects were not due to changes in sarcoplasmic reticulum (SR) Ca loading because rapid cooling contractures were not affected and similar results were observed in the presence of caffeine or ryanodine. The depressant effects of citrate and ADA on tension were greater at pH 5.5-6 and ADA had no effect at pH 8.5. Thus the depressant effect is stronger with more protonated forms of citrate and ADA, which are also poorer Ca buffers. Citrate (but not NTA) decreased Ca current in whole cell voltage clamp and shifted the current-voltage relationship and reversal potential to more negative potentials. Citrate decreased Ca current more effectively at higher citrate and lower Ca concentrations. We conclude that citrate (and some other weak Ca buffers) may directly decrease Ca current and contraction in a manner independent of Ca buffering ability.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3