Regulation of endothelin-mediated calcium mobilization in vascular smooth muscle cells by isoproterenol

Author:

Xuan Y. T.1,Watkins W. D.1,Whorton A. R.1

Affiliation:

1. Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710.

Abstract

We have investigated the effect of isoproterenol on endothelin-induced Ca2+ mobilization in A10 vascular smooth muscle cells. Endothelin (ET) stimulates a rapid and sustained elevation of intracellular Ca2+ mediated by production of inositol phosphates, release of intracellular Ca2+, and activation of a plasmalemmal Ca2+ influx pathway. This influx pathway appears to be a L-type channel because it is inhibited by nicardipine and activated by BAY K 8644. Depolarization of the cells, by elevating extracellular K+, activated a pharmacologically similar channel and produced a similar change in intracellular Ca2+ concentration. Preincubation of cells with isoproterenol reduced the peak Ca2+ response to endothelin and blocked the sustained elevation. However, isoproterenol did not alter K(+)-induced Ca2+ entry. Thus it appears that ET-induced entry is mediated by intracellular signals and not by depolarization. With the use of cells incubated in Ca2(+)-free medium containing 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, isoproterenol was shown to inhibit Ca2+ release from intracellular pools by 36 +/- 3%. Furthermore, isoproterenol pretreatment or addition of adenosine 3',5'-cyclic monophosphate (cAMP) to saponin-permeabilized cells inhibited inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-induced Ca2+ release from intracellular sites. Similar effects were seen with forskolin. Propranolol reversed the inhibitory effects of isoproterenol. Isoproterenol pretreatment also inhibited the rapid formation of Ins(1,4,5)P3 and [2-3H]inositol 1,3,4,5-tetrakisphosphate stimulated by endothelin and reduced the sustained formation of these compounds. Finally, isoproterenol and forskolin led to a greater than 10-fold increase in intracellular cAMP levels. This stimulation of adenylate cyclase by isoproterenol was completely blocked by propranolol. It appears then that the beta-agonist isoproterenol interacts with a beta-adrenergic receptor, elevates cAMP, and thereby alters endothelin-induced Ca2+ mobilization. Inhibition of Ins(1,4,5)P3 formation, reduction in the responsiveness of the Ins(1,4,5)P3 intracellular receptor, and perhaps inhibition of ET-induced Ca2+ entry appear to be involved.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3