Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction

Author:

Youn J. H.1,Gulve E. A.1,Holloszy J. O.1

Affiliation:

1. Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Abstract

In this study we investigated the possibility that an increase in cytoplasmic Ca2+ concentration that is too low to cause muscle contraction can induce an increase in glucose transport activity in skeletal muscle. The compound N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which induces Ca2+ release from the sarcoplasmic reticulum (SR), caused a dose-dependent increase in tension in rat epitrochlearis muscles at concentrations more than approximately 200 microM. Although 100 microM W-7 did not increase muscle tension, it accelerated loss of preloaded 45Ca2+. Glucose transport activity, measured with the nonmetabolizable glucose analogue 3-O-methylglucose, increased sixfold in muscles treated for 100 min with 50 microM W-7 (P less than 0.001) and eightfold in response to 100 microM W-7 (P less than 0.001). The increase in glucose transport activity was completely blocked with 25 microM cytochalasin B. There was no decrease in ATP or creatine phosphate concentrations ([approximately P]) in muscles incubated with 50 microM W-7. Dantrolene (25 microM), which blocks Ca2+ release from the SR, blocked the effects of W-7 both on 45Ca2+ release and on glucose transport activity. 9-Aminoacridine, another inhibitor of Ca2+ release from the SR, also blocked the stimulation of hexose transport by W-7. Caffeine, a compound structurally unrelated to W-7 that also releases Ca2+ from the SR, also increased glucose transport activity. Incubation of muscles with 3 mM caffeine for 30 min, which did not cause contraction or lower [approximately P], induced a threefold increase in 3-O-methylglucose transport (P less than 0.001). These results provide evidence suggesting that an increase in cytoplasmic Ca2+ too low to cause contraction or [approximately P] depletion can bring about an increase in glucose transport activity in skeletal muscle.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3