Prolonged incubation of skeletal muscle increases system A amino acid transport

Author:

Gulve E. A.1,Cartee G. D.1,Youn J. H.1,Holloszy J. O.1

Affiliation:

1. Department of Internal Medicine, Washington University School ofMedicine, St. Louis, Missouri 63110.

Abstract

During the course of experiments involving prolonged incubation of skeletal muscle, we observed large increases in system A amino acid transport activity. System A activity was monitored with the nonmetabolizable amino acid analogue alpha-(methylamino)isobutyrate (MeAIB). When rat epitrochlearis muscles are incubated in Krebs-Henseleit buffer supplemented with 0.1% bovine serum albumin and 8 mM glucose, basal MeAIB transport doubles after 5 h and is elevated approximately sevenfold after 9 h compared with rates measured in muscles incubated for 1 h. Insulin-stimulated transport also doubles after 5 h and increases by fourfold after 9 h. The increases in basal and insulin-stimulated system A transport over time can be prevented by incubating muscles in the presence of cycloheximide. Addition of minimum essential medium essential amino acids (EAA) to the incubation medium blocks the increase in basal and insulin-stimulated MeAIB transport measured after 9 h by 85-90 and 60%, respectively. A single amino acid, glutamine, can account for half of the inhibitory effect of EAA on the time-dependent increase in basal system A transport. Amino acid metabolism is not necessary for inhibition of the rise in basal MeAIB transport. At concentrations normally present in minimum essential medium, nonessential amino acids are less effective (51% inhibition) in preventing the rise in basal transport occurring over 9 h. At three times normal concentrations, however, the ability of nonessential amino acids to prevent the time-dependent increases in basal and insulin-stimulated MeAIB transport is comparable to that of EAA. These changes in MeAIB transport with prolonged incubation are not due to muscle deterioration.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3