Affiliation:
1. Department of Internal Medicine, Washington University School ofMedicine, St. Louis, Missouri 63110.
Abstract
During the course of experiments involving prolonged incubation of skeletal muscle, we observed large increases in system A amino acid transport activity. System A activity was monitored with the nonmetabolizable amino acid analogue alpha-(methylamino)isobutyrate (MeAIB). When rat epitrochlearis muscles are incubated in Krebs-Henseleit buffer supplemented with 0.1% bovine serum albumin and 8 mM glucose, basal MeAIB transport doubles after 5 h and is elevated approximately sevenfold after 9 h compared with rates measured in muscles incubated for 1 h. Insulin-stimulated transport also doubles after 5 h and increases by fourfold after 9 h. The increases in basal and insulin-stimulated system A transport over time can be prevented by incubating muscles in the presence of cycloheximide. Addition of minimum essential medium essential amino acids (EAA) to the incubation medium blocks the increase in basal and insulin-stimulated MeAIB transport measured after 9 h by 85-90 and 60%, respectively. A single amino acid, glutamine, can account for half of the inhibitory effect of EAA on the time-dependent increase in basal system A transport. Amino acid metabolism is not necessary for inhibition of the rise in basal MeAIB transport. At concentrations normally present in minimum essential medium, nonessential amino acids are less effective (51% inhibition) in preventing the rise in basal transport occurring over 9 h. At three times normal concentrations, however, the ability of nonessential amino acids to prevent the time-dependent increases in basal and insulin-stimulated MeAIB transport is comparable to that of EAA. These changes in MeAIB transport with prolonged incubation are not due to muscle deterioration.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献