Author:
Brown Andrea,Muth Theodore,Caplan Michael
Abstract
The ability of polarized epithelia to perform vectorial transport depends on the asymmetrical distribution of transmembrane proteins among their plasma membrane domains. The establishment and maintenance of these polar distributions relies on molecular signals embedded in the proteins themselves and the interpretation of these signals by cellular sorting machinery. Using Madin-Darby canine kidney (MDCK) cells as an in vitro model of polarized epithelia, our laboratory has previously shown that the COOH-terminal cytoplasmic 22 amino acids of the GAT-2 isoform of the γ-amino butyric acid (GABA) transporter are necessary for its basolateral distribution. We demonstrate that the COOH-terminal tail of the transporter can function as an autonomous basolateral distribution signal, independently of the rest of the transporter. We find that the three-amino acid PDZ domain-interacting motif at the COOH-terminus of GAT-2 is not necessary for its basolateral distribution. Instead, the more proximal seven amino acids are necessary both for targeting and for steady-state distribution. Because this sequence resembles no other known basolateral sorting information, we conclude that these seven amino acids contain a novel basolateral targeting and distribution motif.
Publisher
American Physiological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献