Redox signaling of cardiac HSF1 DNA binding

Author:

Paroo Zain1,Meredith Michael J.2,Locke Marius3,Haist James V.4,Karmazyn Morris4,Noble Earl G.15

Affiliation:

1. School of Kinesiology, Faculty of Health Sciences,

2. School of Dentistry, Oregon Health and Science University, Portland, Oregon 97201-3098

3. Faculty of Physical Education and Health, University of Toronto, Toronto, Ontario, Canada M5S 2W6; and

4. Department of Pharmacology and Toxicology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 3K7;

5. Lawson Health Research Institute, and

Abstract

Experiments involving chemical induction of the heat shock response in simple biological systems have generated the hypothesis that protein denaturation and consequential binding of heat shock transcription factor 1 (HSF1) to proximal heat shock elements (HSEs) on heat shock protein ( hsp) genes are the result of oxidation and/or depletion of intracellular thiols. The purpose of the present investigation was to determine the role of redox signaling of HSF1 in the intact animal in response to physiological and pharmacological perturbations. Heat shock and exercise induced HSF1-HSE DNA binding in the rat myocardium ( P < 0.001) in the absence of changes in reduced glutathione (GSH), the major nonprotein thiol in the cell. Ischemia-reperfusion, which decreased GSH content ( P < 0.05), resulted in nonsignificant HSF1-HSE formation. This dissociation between physiological induction of HSF1 and changes in GSH was not gender dependent. Pharmacological ablation of GSH withl-buthionine-[ S, R]-sulfoximine (BSO) treatment increased myocardial HSF1-HSE DNA binding in estrogen-naive animals ( P = 0.007). Thus, although physiological induction of HSF1-HSE DNA binding is likely regulated by mediators of protein denaturation other than cellular redox status, the proposed signaling pathway may predominate with pharmacological oxidation and may represent a plausible and accessible strategy in the development of HSP-based therapies.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3