20-Hydroxyvitamin D2is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells

Author:

Slominski Andrzej T.1,Kim Tae-Kang1,Janjetovic Zorica1,Tuckey Robert C.2,Bieniek Radoslaw1,Yue Junming3,Li Wei4,Chen Jianjun4,Nguyen Minh N.2,Tang Edith K. Y.2,Miller Duane4,Chen Tai C.5,Holick Michael5

Affiliation:

1. Departments of 1Pathology and Laboratory Medicine, and

2. School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Australia;

3. Physiology, Cancer Research Center, University of Tennessee Health Science Center, Memphis, Tennessee;

4. Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee;

5. Department of Medicine, Division of Endocrinology, Boston University School of Medicine, Boston, Massachusetts

Abstract

20-hydroxyvitamin D2[20(OH)D2] inhibits DNA synthesis in epidermal keratinocytes, melanocytes, and melanoma cells in a dose- and time-dependent manner. This inhibition is dependent on cell type, with keratinocytes and melanoma cells being more sensitive than normal melanocytes. The antiproliferative activity of 20(OH)D2is similar to that of 1,25(OH)2D3and of newly synthesized 1,20(OH)2D2but significantly higher than that of 25(OH)D3. 20(OH)D2also displays tumorostatic effects. In keratinocytes 20(OH)D2inhibits expression of cyclins and stimulates involucrin expression. It also stimulates CYP24 expression, however, to a significantly lower degree than that by 1,25(OH)2D3or 25(OH)D3. 20(OH)D2is a poor substrate for CYP27B1 with overall catalytic efficiency being 24- and 41-fold lower than for 25(OH)D3with the mouse and human enzymes, respectively. No conversion of 20(OH)D2to 1,20(OH)2D2was detected in intact HaCaT keratinocytes. 20(OH)D2also demonstrates anti-leukemic activity but with lower potency than 1,25(OH)2D3. The phenotypic effects of 20(OH)D2are mediated through interaction with the vitamin D receptor (VDR) as documented by attenuation of cell proliferation after silencing of VDR, by enhancement of the inhibitory effect through stable overexpression of VDR and by the demonstration that 20(OH)D2induces time-dependent translocation of VDR from the cytoplasm to the nucleus at a comparable rate to that for 1,25(OH)2D3. In vivo tests show that while 1,25(OH)2D3at doses as low as 0.8 μg/kg induces calcium deposits in the kidney and heart, 20(OH)D2is devoid of such activity even at doses as high as 4 μg/kg. Silencing of CY27B1 in human keratinocytes showed that 20(OH)D2does not require its transformation to 1,20(OH)2D2for its biological activity. Thus 20(OH)D2shows cell-type dependent antiproliferative and prodifferentiation activities through activation of VDR, while having no detectable toxic calcemic activity, and is a poor substrate for CYP27B1.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3