Author:
Cucu Dana,Simaels Jeannine,Eggermont Jan,Van Driessche Willy,Zeiske Wolfgang
Abstract
Opposite effects of Ni2+ on Xenopus and rat ENaCs expressed in Xenopus oocytes. Am J Physiol Cell Physiol 289: C946–C958, 2005. First published June 8, 2005; .—The epithelial Na+ channel (ENaC) is modulated by various extracellular factors, including Na+, organic or inorganic cations, and serine proteases. To identify the effect of the divalent Ni2+ cation on ENaCs, we compared the Na+ permeability and amiloride kinetics of Xenopus ENaCs (xENaCs) and rat ENaCs (rENaCs) heterologously expressed in Xenopus oocytes. We found that the channel cloned from the kidney of the clawed toad Xenopus laevis [wild-type (WT) xENaC] was stimulated by external Ni2+, whereas the divalent cation inhibited the channel cloned from the rat colon (WT rENaC). The kinetics of amiloride binding were determined using noise analysis of blocker-induced fluctuation in current adapted for the transoocyte voltage-clamp method, and Na+ conductance was assessed using the dual electrode voltage-clamp (TEVC) technique. The inhibitory effect of Ni2+ on amiloride binding is not species dependent, because Ni2+ decreased the affinity (mainly reducing the association rate constant) of the blocker in both species in competition with Na+. Importantly, using the TEVC method, we found a prominent difference in channel conductance at hyperpolarizing voltage pulses. In WT xENaCs, the initial ohmic current response was stimulated by Ni2+, whereas the secondary voltage-activated current component remained unaffected. In WT rENaCs, only a voltage-dependent block by Ni2+ was obtained. To further study the origin of the xENaC stimulation by Ni2+, and based on the rationale of the well-known high affinity of Ni2+ for histidine residues, we designed α-subunit mutants of xENaCs by substituting histidines that were expressed in oocytes, together with WT β- and γ-subunits. Changing His215 to Asp in one putative amiloride-binding domain (WYRFHY) in the extracellular loop between Na+ channel membrane segments M1 and M2 had no influence on the stimulatory effect of Ni2+, and neither did complete deletion of this segment. Next, we mutated His416 flanked by His411 and Cys417, a unique site for possible heavy metal ion chelation, and, with this quality, most proximal (∼100 amino acids upstream of the second putative amiloride binding site at the pore entrance), was found localized at M2. Replacing His416 with arginine, aspartate, tyrosine, and alanine clearly affected amiloride binding in all cases, as well as Na+ conductance, as expressed in the xENaC current-voltage relationship, especially with regard to aspartate and tyrosine. However, similarly to those obtained with the WYRFHY stretch, none of these mutations could either abolish the stimulating effect of Ni2+ or reverse it to an inhibitory type.
Publisher
American Physiological Society
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献