Author:
Ljubkovic Marko,Mio Yasushi,Marinovic Jasna,Stadnicka Anna,Warltier David C.,Bosnjak Zeljko J.,Bienengraeber Martin
Abstract
Ischemic cardiac injury can be substantially alleviated by exposing the heart to pharmacological agents such as volatile anesthetics before occurrence of ischemia-reperfusion. A hallmark of this preconditioning phenomenon is its memory, when cardioprotective effects persist even after removal of preconditioning stimulus. Since numerous studies pinpoint mitochondria as crucial players in protective pathways of preconditioning, the aim of this study was to investigate the effects of preconditioning agent isoflurane on the mitochondrial bioenergetic phenotype. Endogenous flavoprotein fluorescence, an indicator of mitochondrial redox state, was elevated to 195 ± 16% of baseline upon isoflurane application in intact cardiomyocytes, indicating more oxidized state of mitochondria. Isoflurane treatment also elicited partial dissipation of mitochondrial transmembrane potential, which remained depolarized even after anesthetic withdrawal (tetramethylrhodamine fluorescence intensity declined to 83 ± 3 and 81 ± 7% of baseline during isoflurane exposure and washout, respectively). Mild uncoupling, with preserved ATP synthesis, was also detected in mitochondria that were isolated from animals that had been previously preconditioned by isoflurane in vivo, revealing its memory nature. These mitochondria, after exposure to hypoxia and reoxygenation, exhibited better preserved respiration and ATP synthesis compared with mitochondria from nonpreconditioned animals. Partial mitochondrial depolarization was paralleled by a diminished Ca2+uptake into isoflurane-treated mitochondria, as indicated by the reduced increment in rhod-2 fluorescence when mitochondria were challenged with increased Ca2+(180 ± 24 vs. 258 ± 14% for the control). In conclusion, isoflurane preconditioning elicits partial mitochondrial uncoupling and reduces mitochondrial Ca2+uptake. These effects are likely to reduce the extent of the mitochondrial damage after the hypoxic stress.
Publisher
American Physiological Society
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献