Affiliation:
1. Department of Pharmacology, National University of Singapore, Singapore
Abstract
The present study investigated the mechanism of mouse pancreatic acinar cell apoptosis induced by H2S in an in vitro system, using isolated pancreatic acini. Treatment of pancreatic acini with 10 μM NaHS (a donor of H2S) for 3 h caused phosphatidylserine externalization as shown by annexin V binding, an indicator of early stages of apoptosis. This treatment also resulted in the activation of the caspase cascade and major changes at the mitochondrial level. Caspase-3, -8, and -9 activities were stimulated by H2S treatment. Treatment with inhibitors of caspase-3, -8, and -9 significantly inhibited H2S-induced phosphatidylserine externalization as shown by reduced annexin V staining. The mitochondrial membrane potential was collapsed in H2S-treated acini as evidenced by fluorescence microscopy and quantitative analysis. Furthermore, the treatment of acini with H2S caused the release of cytochrome c by the mitochondria. To investigate the mechanism underlying pancreatic acinar cell apoptosis, we also characterized the protein expression of a range of molecules that are each known to influence the apoptotic pathway. Among proapoptotic proteins, Bax expression was activated in H2S-treated cells but not Bid, and the antiapoptotic proteins Bcl-XL and Bcl-2 did not show any activation in pancreatic acinar cell apoptosis. The death effector domain-containing protein Flip is downregulated in H2S-treated acini. These results demonstrate the induction of pancreatic acinar cell apoptosis in vitro by H2S and the involvement of both mitochondrial and death receptor pathways in the process of apoptosis.
Publisher
American Physiological Society
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献