Coupling of epithelial Na+and Cl−channels by direct and indirect activation by serine proteases

Author:

Gondzik Veronika12,Weber Wolf Michael2,Awayda Mouhamed S.1

Affiliation:

1. Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York; and

2. Institute of Animal Physiology, Westphalian Wilhelms University, Munster, Germany

Abstract

The mammalian collecting duct (CD) is continuously exposed to urinary proteases. The CD expresses an epithelial Na+channel (ENaC) that is activated after cleavage by serine proteases. ENaC also exists at the plasma membrane in the uncleaved form, rendering activation by extracellular proteases an important mechanism for regulating Na+transport. Many exogenous and a small number of endogenous extracellular serine proteases have been shown to activate the channel. Recently, kallikrein 1 (KLK1) was shown to increase γENaC cleavage in the native CD indicating a possible direct role of this endogenous protease in Na+homeostasis. To explore this process, we examined the coordinated effect of this protease on Na+and Cltransport in a polarized renal epithelial cell line (Madin-Darby canine kidney). We also examined the role of native urinary proteases in this process. Short-circuit current ( Isc) was used to measure transport of these ions. The Iscexhibited an ENaC-dependent Na+component that was amiloride blockable and a cystic fibrosis transmembrane conductance regulator (CFTR)-dependent Clcomponent that was blocked by inhibitor 172. Apical application of trypsin, an exogenous S1 serine protease, activated IENaCbut was without effects on ICFTR. Subtilisin an exogenous S8 protease that mimics endogenous furin-type proteases activated both currents. A similar activation was also observed with KLK1 and native rat urinary proteases. Activation with urinary proteases occurred within minutes and at protease concentrations similar to those in the CD indicating physiological significance of this process. ENaC activation was irreversible and mediated by enhanced cleavage of γENaC. The activation of CFTR was indirect and likely dependent on activation of an endogenous apical membrane protease receptor. Collectively, these data demonstrate coordinated stimulation of separate Na+and Cltransport pathways in renal epithelia by extracellular luminal proteases. They also indicate that baseline urinary proteolytic activity is sufficient to modify Na+and Cltransport in these epithelia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3