Glucocorticoids stimulate ENaC upregulation in bovine mammary epithelium

Author:

Quesnell Rebecca R.,Han Xiaobin,Schultz Bruce D.

Abstract

Mammary epithelia produce an isotonic, low-Na+ fluid that is rich in nutrients. Mechanisms that account for the low electrolyte concentration have not been elucidated, although amiloride-sensitive ion transport has been reported in some situations. We hypothesized that corticosteroid exposure modulates epithelial Na+ channel (ENaC) expression and/or activity in bovine mammary epithelial cells. BME-UV cells were grown to confluent monolayers on permeable supports with a standard basolateral medium and apical medium of low-electrolyte, high-lactose composition that resembles the ionic composition of milk. Ion transport was assessed in modified Ussing flux chambers. Exposure to glucocorticoids (dexamethasone, cortisol, or prednisolone), but not aldosterone, increased short-circuit current ( Isc), a sensitive measure of net ion transport, whereas apical exposure to amiloride or benzamil reduced corticosteroid-induced Isc close to basal levels. Quantitative RT-PCR indicated a glucocorticoid-induced increase in mRNA for β- and γ-ENaC, whereas α-ENaC mRNA expression was only mildly affected. Exposure to mifepristone (a glucocorticoid receptor antagonist), but not spironolactone (a mineralocorticoid receptor antagonist), precluded both the corticosteroid-induced elevation in amiloride-sensitive Isc and the induced changes in β- and γ-ENaC mRNA. We conclude that Na+ movement across mammary epithelia is modulated by corticosteroids via a glucocorticoid receptor-mediated mechanism that regulates the expression of the β- and γ-subunits of ENaC. ENaC expression and activity could account for the low Na+ concentration that is typical of milk.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3