Mild hypothermia affects the morphology and impairs glutamine-induced anabolic response in human primary myotubes

Author:

Rantala Robert1,Chaillou Thomas1

Affiliation:

1. Department of Health Sciences, Örebro University, Orebro, Sweden

Abstract

The specific impact of reduced temperature on skeletal muscle adaptation has been poorly investigated. Cold water immersion, one situation leading to decreased skeletal muscle temperature, is commonly proposed to reduce the perception of fatigue and muscle soreness after strenuous exercise. In contrast, it may impair long-term benefits of resistance exercise training on muscle strength and hypertrophy. To date, the physiological factors responsible for this blunted muscle adaptation remain unclear. Here, we used a cell culture model of human primary myotubes to specifically investigate the intrinsic behavior of muscle cells during mild hypothermia (MH). Newly formed myotubes were exposed to either 37°C or 32°C to evaluate the effect of MH on myotube size and morphology, protein synthesis, and anabolic signaling. We also compared the glutamine (GLUT)-induced hypertrophic response between myotubes incubated at 32°C or 37°C. We showed that 48 h exposure to MH altered the cellular morphology (greater myotube area, shorter myosegments, myotubes with irregular shape) and impaired GLUT-induced myotube hypertrophy. Moreover, MH specifically reduced protein synthesis at 8 h. This result may be explained by an altered regulation of ribosome biogenesis, as evidenced by a lower expression of 45S pre-ribosomal RNA and MYC protein, and a lower total RNA concentration. Furthermore, MH blunted GLUT-induced increase in protein synthesis at 8 h, a finding consistent with an impaired activation of the mechanistic target of rapamycin pathway. In conclusion, this study demonstrates that MH impairs the morphology of human myotubes and alters the hypertrophic response to GLUT.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3